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Methods are presented for an analysis of zones and sublattices of integral

lattices, whose relevance is revealed by sharp peaks in the frequency distribution

of hexagonal and tetragonal lattices, as a function of the axial ratio c=a. Starting

from a few examples, zone symmetries, lattice±sublattice relations and integral

scaling transformations are derived for hexagonal lattices with axial ratios
��
3
2

p
,���

3
p

,
���
2
p

and 1 (the isometric case) and for the related
���
3
p

and
���
2
p

tetragonal

lattices. Sublattices and zones connected by linear rational transformations lead

to rational equivalence classes of integral lattices. For properties like the axial

ratio and the point-group symmetry (lattice holohedry), rational equivalence

can be extended so that also metric tensors differing by an integral factor

become equivalent. These two types of equivalence classes are determined for

the lattices mentioned above.

1. Introduction

The distribution of hexagonal and tetragonal crystals as a

function of the axial ratio 
 � c=a of the lattice parameters

shows sharp peaks at (or near to) rational values of 
2. This

implies that the corresponding lattices are integral (Janner,

2004; de Gelder & Janner, 2004a).

In order to get a better understanding of the structural basis

of this empirical observation, properties of crystal structures

with integral lattices are investigated. Several different

approaches are possible, as already considered for crystal

structures, like hexagonal close packing, or B8 compounds

with a Frank's cubic hexagonal lattice:

(a) diffraction symmetry of zone patterns (Singh et al., 1998;

Ranganathan et al., 2002);

(b) building block units (Singh et al., 1998; Lidin, 1998;

Ranganathan et al., 2002);

(c) multimetrical symmetry (Janner, 1997);

(d) projection and section of higher-dimensional lattices

(Frank, 1965);

(e) integral quadratic forms, positive de®nite and inde®nite

(Conway & Sloane, 1988).

In this note, attention is focused on the identi®cation of

square and hexagonal zones. This problem is equivalent to

that of determining hexagonal and tetragonal sublattices.

Ways of constructing new solutions from a given one are

discussed.

2. Basic definitions and notation

Consider a 
 hexagonal lattice � with rational axial ratio

squared 
2 2 Q. The cubic hexagonal Frank lattice (Frank,

1965) represents the special case 
 � ��
3
2

p
and the lattice of a

hexagonal close packing (h.c.p.) that of 
 � ��
8
3

p
. The normal-

ized hexagonal basis a � �a1; a2; a3� with components

expressed with respect to an orthonormal reference system is

given by

a1 � �1; 0; 0�; a2 � ÿ 1
2 ;

��
3
p
2 ; 0

� �
; a3 � �0; 0; 
�: �1�

The reciprocal basis a� � �a�1; a�2; a�3� is then

a�1 � 1; 1��
3
p ; 0

� �
; a�2 � 0; 2��

3
p ; 0

� �
; a�3 � 0; 0; 1




� �
: �2�

The generating matrices M and M� of the lattices � and ��,
respectively,

M �
1 0 0

ÿ 1
2

��
3
p
2 0

0 0 


0@ 1A; M� �
1 1��

3
p 0

0 2��
3
p 0

0 0 1



0B@
1CA; �3�

are related by M� � ~Mÿ1, where the tilde indicates transpo-

sition. The corresponding metric tensors are given by the

Gram matrices:

gh�
� � M ~M �
1 ÿ 1

2 0

ÿ 1
2 1 0

0 0 
2

0@ 1A; �4�

g�h�
� � M� ~M� �
4
3

2
3 0

2
3

4
3 0

0 0 1

2

0@ 1A: �5�

It follows that the axial ratio for the hexagonal lattice �� is


� � ja
�
3 j
ja�1 j
�

���
3
p

2

: �6�

For 
2 a rational number (
2 2 Q), both � and �� are integral

lattices and commensurate. This means that there is a re-



ciprocal-lattice vector in the direction of any direct lattice

vector and conversely

v� � Saa�v; v � Sa�av� �7�
for v 2 � and v� 2 �� because the corresponding basis

transformation matrices have rational entries. Indeed, one

®nds

Saa� �
� � gh�
�; Sa�a�
� � g�h�
�: �8�
It is, therefore, convenient to treat �� as a direct hexagonal

lattice with axial ratio 
� and with a normalized metric tensor

gh�
��:

gh�
�� � ~U 3
4 g�h�
�U �

1 ÿ 1
2 0

ÿ 1
2 1 0

0 0 3
4
2

0@ 1A �9�

with

U �
1 �1 0

0 1 1

0 0 1

0@ 1A: �10�

In the case of a tetragonal lattice, the normalized metric tensor

is

gt�
� �
1 0 0

0 1 0

0 0 
2

0@ 1A; 
2 2 Q; �11�

and the axial ratio of the reciprocal lattice is 
� � 1=
. The

lattice vectors are given as v � �n1n2n3� 2 � and

v� � �h1h2h3�� 2 �� (written as row vectors for graphical

reasons).

A zone Z is a set of direct lattice planes that intersect each

other along parallel lines. The common direction of these lines

is the zone axis. To each zone plane �hkl� there corresponds a

reciprocal-lattice vector �hkl��, perpendicular to the zone axis,

normally given in terms of a direct-lattice vector �stu�:
�stu��hkl�� � 0 !�hkl� 2 Z�stu�; �12�

where the zone Z is speci®ed by its zone axis �stu�. Accord-

ingly, a given zone de®nes a two-dimensional lattice of re-

ciprocal vectors. The zone is hexagonal (or square) if this

lattice is hexagonal (or square). In Singh et al. (1998) and

Ranganathan et al. (2002), these zones are labeled by the

letters F and G, respectively. As a consequence of (7), each of

these lattices is proportional to a direct lattice of the same

point symmetry, which together with the zone-axis vector

generates a three-dimensional sublattice � of �. This sublat-

tice is hexagonal (or tetragonal) if the zone is hexagonal (or

square, respectively). The matrix S transforming the original

hexagonal basis a to s � �s1; s2; s3� of the sublattice � has as

third column vector the zone axis s3, expressed in the basis a.

If the components s11, s12, s13, s21, s22, s23 of s1 and of s2,

respectively, or the components s31, s32, s33 of s3, share a

common factor, the basis s and the matrix S are reducible,

otherwise they are irreducible. In the case of a hexagonal zone

Z�s3� � F, one has

~Sgh�
�S � �2gh�
 0�; S 2 GL�3;Q�; �13�
where S has integral entries with column vectors s1, s2, s3, the

tilde indicates transposition and � is the scaling factor. For � a

rational number, this scaling corresponds to a lattice±sublat-

tice relation:

S : 
h ÿ!� 
 0h; � 2 Q; �14�
where 
h denotes an integral hexagonal lattice with axial ratio


. The corresponding expressions for a square zone Z�s3� � G

of 
h are

~Sgh�
�S � �2gt�
 0�; S 2 GL�3;Q�; �15�

S : 
h ÿ!� 
 0t; � 2 Q; �16�
where gt�
� is the metric tensor of the tetragonal sublattice 
t

with axial ratio 
.

Example: Frank's cubic hexagonal lattice �.

Axial ratio: 
 � ��
3
2

p
.

Reciprocal axial ratio: 
� � 1��
2
p .

(i) Hexagonal zone F: zone axis: s3 � �421�; hexagonal zone

lattice: s�1 � ��120�� � 2
3 �030�, s�2 � �0�12�� � 2

3 ��1�22�.
Sublattice �: s1 � �030�, s2 � ��1�22�, s3 � �421�.
Scaling matrix:

S �
0 ÿ1 4

3 ÿ2 2

0 2 1

0@ 1A:
Metric matrix: ~Sgh�

��
3
2

p �S � 9gh�
��
3
2

p �.
Lattice±sublattice relation: � � ��

3
2

p
h ÿ!3 S� � ��

3
2

p
h.

(ii) Square zone G: zone axis: s3 � �211�; square zone lattice:

s�1 � ��120�� � 2
3 �030�, s�2 � ��102�� � 2

3 ��2�12�.
Sublattice �: s1 � �030�, s2 � ��2�12�, s3 � �211�.
Scaling matrix:

S �
0 �2 2

3 �1 1

0 2 1

0@ 1A
Metric matrix: ~Sgh�

��
3
2

p �S � 9gt� 1��
2
p �.

Lattice±sublattice relation: � � ��
3
2

p
h ÿ!3 S� � 1��

2
p t.

3. c0 families

From a given lattice±sublattice transformation S0 of a lattice

with axial ratio 
0 �
������������
m0=n0

p
, with relatively prime and

square-free integers m0 and n0, one easily derives the trans-

formation S for a lattice with axial ratio 
 � �m=n�
0 for

m=n 2 Q. All such integral lattices belong to the same 
0

family. One simply has

S0 �
s11 s12 s13

s21 s22 s23

s31 s32 s33

0@ 1A ÿ!m=n
S �

ms11 ms12 ms13

ms21 ms22 ms23

ns31 ns32 ns33

0@ 1A:
�17�

Depending on the integers m and n (supposed to be relatively

prime), the S matrix can be reduced in the way indicated
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above. So, for example, for the
��
3
2

p
family, one ®nds the

hexagonal zones Z�4m 2m n� and the lattice±sublattice trans-

formation:

S �
0 ÿm 4m

3m ÿ2m 2m

0 2n n

0@ 1A :
m

n

���
3

2

r
h ÿ!3m

���
3

2

r
h: �18�

This relation is irreducible for m and n odd. For m � 2p even

(and thus n odd), the transformation can be reduced and one

®nds

S �
0 ÿp 8p

3p ÿ2p 4p

0 n n

0@ 1A :
2p

n

���
3

2

r
h ÿ!3p

2

���
3

2

r
h: �19�

In a similar way for n � 2q even (and m odd), one derives a

corresponding reduced transformation:

S �
0 ÿm 2m

3m ÿ2m m

0 4q q

0@ 1A :
m

2q

���
3

2

r
h ÿ!3m 1

2

���
3

2

r
h: �20�

In the present note, rational scalings and lattice±sublattice

relations are derived for the four hexagonal families
��
3
2

p
H,���

3
p

H,
���
2
p

H and 1H with 
0 �
��
3
2

p
,
���
3
p

,
���
2
p

and 1, respectively

(corresponding to molecular form lattices observed in axial-

symmetric proteins). Using the methods explained below, one

also gets similar relations for the two tetragonal families
���
2
p

T

and
���
3
p

T with 
0 �
���
2
p

and
���
3
p

, respectively. The lattice±

sublattice relations for the same zone are listed in Table 1 and

the matrices Si are indicated in Tables 2 to 5 for the hexagonal

and the square zones, some of which are given for Frank's

lattice in Singh et al. (1998) and in Ranganathan et al. (2002).

4. Reciprocal transformation

Given a zone Z with zone axis s3 and the two-dimensional

zone lattice spanned by s�1; s�2, instead of transforming these

two into the direct lattice vectors s1; s2 as in equation (7),

leading to the three-dimensional sublattice � of �, one can

transform the zone-axis vector into a reciprocal one by

s�3 � Saa�s3 and consider the sublattice �� of �� spanned by

s�1; s�2; s�3 . The lattice±sublattice relation for the reciprocal

lattice �� is then given by the matrix S� � �s�1; s�2; s�3� with

column vectors s�i . This corresponds to a zone Z�s�3 � � Z�hkl��.

But the lattices �� and �� are also hexagonal and can be

treated as such, after expressing the reciprocal basis as a

normalized hexagonal basis (1).

To the hexagonal lattices � with axial ratios
��
3
2

p
,
���
3
p

,
���
2
p

, 1,

there correspond the reciprocal lattices �� with axial ratio
1
2

���
2
p

, 1
2,

1
2

��
3
2

p
, 1

2

���
3
p

, respectively. This implies that the set of

families
��
3
2

p
H,

���
2
p

H and
���
3
p

H, 1H, respectively, is left in-

variant by reciprocity, not however the individual families.

In the tetragonal case, each of the families
���
2
p

T,
���
3
p

T is

invariant with respect to reciprocity.

Given a lattice±sublattice transformation S for �, the

corresponding one S� for �� is obtained by

S� � Uÿ1Saa� �
�S; Uÿ1 �
1 1 0

0 1 0

0 0 1

0@ 1A; �21�

up to constant factors ensuring that S� is integral and irre-

ducible. Indeed, using the identity Saa� �
� � gh�
�, one ®nds

~S�gh�
��S� � ~Sgh�
�S � gh�
 0�: �22�

Example for 
 � �m=n� ��
3
2

p
.

The reciprocal axial ratio is 
� � n=�m ���
2
p �. To the hexagonal

zone Z�4m 2m n� corresponds the matrix

S �
0 ÿm 4m

3m ÿ2m 2m

0 2n n

0@ 1A
(see Table 2). One then has

Uÿ1gh

���
3

2

r !
S �

3mn ÿ3mn 6mn

6mn ÿ3mn 0

0 6m2 3m2

0B@
1CA

�
n ÿn 2n

2n ÿn 0

0 2m m

0B@
1CA � S�; �23�

which is irreducible for m, n odd and relatively prime. One

veri®es that

~S�gh

n

m

1���
2
p

� �
S� � 3n2gh

���
3

2

r !
�24�

for the zone Z�2n 0 m�. It is then easy to derive a corre-

sponding transformation of gh��m=n� ���
2
p � and the zone

Z�4m 0 n�, which in fact is the one indicated in Table 4 for the���
2
p

H family, in terms of �, � and S.

5. Inverse transformation

The inverse of S is a rational matrix proportional to an integral

one, denoted by T, having corresponding properties:

Sÿ1 � T; integral T 2 GL�3;Q�: �25�
One then gets the inverse hexagonal lattice±sublattice rela-

tion:
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Table 1
Lattice±sublattice relations for the same zone (the matrices Si are given in
Tables 2 to 5).

Integral lattice Zone �z1z2� Lattice sublattice

m
n

��
3
2

p
h Z[4m 2m n] �1�1� S1 ÿ!

3
S2

m
n

���
3
p

h Z[120] �1�1� S6 ÿ!
3

S7

�21� S6 ÿ!
3

S8
m
n

���
3
p

t Z[100] �1�1� S10 ÿ!
3

S11

m
n

���
2
p

h Z[4m 0 n] �1�1� S13 ÿ!
3

S14
m
n

���
2
p

t Z[2m 0 n] ��1�1� S18 ÿ!
1

S19

�1�1� S18 ÿ!
3

S20

m
n h Z[100] �1�1� S22 ÿ!

3
S23



~Tgh�
 0�T � �2gh�
� for ~SghS � �2gh�
 0� �26�
and correspondingly for a square zone:

~Tgt�
 0�T � �2gh�
� for ~SghS � �2gt�
 0�; �27�
implying the product ST � �2�2I, where I denotes the unit

matrix. In this way, one obtains hexagonal sublattice and

scaling relations for tetragonal lattices belonging to the two

families
���
3
p

T,
���
2
p

T, as indicated in Tables 3 and 4.

6. Sublattices of a given zone

By applying the various procedures indicated so far, a number

of sublattices have been found, which share the same zone.

One has, ®rst of all, to realise that, in general, a zone of an

integral lattice depends not only on the zone axis but also on

the axial ratio. So, for example, the zone Z�2m m n� for


 � m
n

��
3
2

p
is square, whereas it is hexagonal for 
 � m

2n

��
3
2

p
(see

Table 2). Of course, the zone Z�001� with zone plane

perpendicular to the rotational axis has a hexagonal symmetry,

which does not depend on the axial ratio.

For a given zone, different sublattice transformations

correspond to either a different choice of the basis (setting) of

the same lattice (and are, therefore, equivalent) or to a

sublattice of the two-dimensional zone lattice �0. An example

of the ®rst case is given by S18 and S19 of Table 4 and S1, S2 of

Table 2 represent examples of the second case.

In order to characterize these situations, consider two

hexagonal lattice±sublattice relations for a given zone axis s3:

S�s1; s2; s3� : �ÿ!�

S0�s01; s02; s3� : �ÿ!�0; �0 � �; �28�
with s1; s2 a hexagonal basis of �0. Then,

s01 � z1s1 � z2s2; s02 � z01s1 � z02s2 � Rs01; z1; z2; z01; z02 2 Z
�29�

with R 2 GL�2;Z� a sixfold integral transformation, which can

be chosen to be

R � 0 ÿ1

1 ÿ1

� �
:

Accordingly, the vector �z1z2� characterizes the relation

between S and S0 or � and �0, respectively. The determinant

of the matrix

z1 z01
z2 z02

� �
is the index � of �0 in �:

�z1z2� : S ÿ!� S0: �30�
Example: Zone m

n

���
3
p
; Z�120�: S6; S7; S8 of Table 3

S6 � S�s1; s2; s3� : s1 � �2m 0 0�; s2 � � �m0n�; s3 � �120�
with s1; s2 a hexagonal basis of �0.

For S7 � S0�s01; s02; s3�, one has

s01 � �3m 0 �n� � s1 ÿ s2; s02 � �0 0 2n� � s1 � 2s2

and one veri®es the relation:

R�z1z2� � R�1�1� � �z01z02� � �12�:
In a similar way, one ®nds for S8: �z1z2� � �21� and

�z01z02� � R�21� � ��11�.
These relations for the transformations indicated in Tables 2

to 5 sharing the same zone are summarized in Table 1.

7. Composition

Another way to get additional lattice±sublattice relations is by

composition, combining successively transformations already

derived:

� ÿ!S1
�1 ÿ!

S2
� ! � ÿ!S1S2

�: �31�
In Tables 2 to 5, the transformations given imply the following

integral scaling relations for the hexagonal and tetragonal

families:
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Table 2��
3
2

p
-hexagonal family.

Family 
 Zone Transformation Scaling relation

��
3
2

p
H m

n

��
3
2

p
Z[4m 2m n] = F S1 �

0 ÿm 4m

3m ÿ2m 2m

0 2n n

0@ 1A m
n

��
3
2

p
h ÿ!3m ��

3
2

p
h

� �n 2n 0�� �0 �n 2m��

Z[4m 2m n] S2 �
m ÿ2m 4m

5m ÿm 2m

ÿ2n 4n n

0@ 1A m
n

��
3
2

p
h ÿ!3

��
3
p

m 1
2

���
2
p

h
� �n 3n 2 �m�� � �n 0 4m��

Z[2m m n] = G S3 �
0 2m 2m

3m m m

0 ÿ2n n

0@ 1A m
n

��
3
2

p
h ÿ!3m 1

2

���
2
p

t
� �n 2n 0�� �n 0 2 �m��

2m
n

��
3
2

p
Z[8m 4m n] S4 �

0 ÿm 8m

3m ÿ2m 4m

0 n n

0@ 1A 2m
n

��
3
2

p
h ÿ!3m

2
��
3
2

p
h

� �n 2n 0�� �0 �n 4m��

m
2n

��
3
2

p
Z[2m m n] S5 �

0 ÿm 2m

3m ÿ2m m

0 4n n

0@ 1A m
2n

��
3
2

p
h ÿ!3m 1

2

��
3
2

p
h

� �n 2n 0�� �0 �n m��



���
3

2

r
Hÿ!

���
3

2

r
H;

���
2
p

H;
���
2
p

T

���
2
p

Hÿ!
���
3

2

r
H;

���
2
p

H;
���
2
p

T

���
2
p

Tÿ!
���
3

2

r
H;

���
2
p

T

�32�

so that the set of families
��
3
2

p
H;

���
2
p

H and
���
2
p

T is closed under

composition. In a similar way, from���
3
p

Hÿ!
���
3
p

H; 1H;
���
3
p

T

1Hÿ!
���
3
p

H; 1H;
���
3
p

T���
3
p

Tÿ!
���
3
p

H; 1H;
���
3
p

T

�33�

follows the other closed set
���
3
p

H; 1H;
���
3
p

T.

Example: m
n

���
2
p

h.

From the transformations S15 and S20, one deduces the

composed transformation S:
���
2
p

hÿ! ���
2
p

tÿ! ���
2
p

h ����
2
p

hÿ! ���
2
p

h:

S �
1 1 2

2 0 0

0 ÿ1 1

0B@
1CA ÿ1 2 2

3 0 0

ÿ1 2 ÿ1

0B@
1CA

�
0 3 0

ÿ1 2 4

ÿ2 1 ÿ1

0B@
1CA � 2 ÿ1 4

3 0 0

ÿ1 2 1

0B@
1CA: �34�

It then follows that

S �
2m ÿm 4m

3m 0 0

ÿn 2n n

0@ 1A � S14;
m

n

���
2
p

h ÿ!3m ���
2
p

h; �35�

as indicated in Table 4.

Not all these scaling transformations correspond to a

lattice±sublattice relation. So, for example for S9:���
3
p

h ÿ!
��
3
p ���

3
p

t, the scaling factor is
���
3
p

. This implies that,

starting from a hexagonal lattice with a and c parameters given

by 1 and
���
3
p

, respectively, one ®nds that the corresponding

lattice parameters for the tetragonal sublattice are a � ���
3
p

,

c � 3 and not 1 and
���
3
p

, as indicated in the scaling relation.

This is because the choice of a unit of length leading to a

normalized metric tensor for a given lattice cannot be re-

peated for its sublattices.

8. Rational equivalence of integral lattices

Let us denote by ��a� the lattice spanned by a basis

a � �a1; a2; a3�, by g�a� the corresponding metric tensor with

entries gik � aiak and a crystallographic point group K�a� of

orthogonal transformations, expressed in the basis a, leaving

the lattice � invariant. Therefore, the point-group elements

A�a� of K�a� are invertible integral matrices that leave the

metric tensor g�a� invariant:

~A�a�g�a�A�a� � g�a�; A�a� 2 K�a� � GL�3;Z�: �36�

K�a� is a ®nite subgroup of GL�3;Z�. The holohedry of � is

the largest point group leaving � invariant.

The real linear transformation S of the basis

a! s � Sa � �Sa1; Sa2; Sa3� � �s1; s2; s3� transforms lattice,

metric tensor and point group accordingly and de®nes an

af®ne equivalence:
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Table 3���
3
p

-hexagonal and
���
3
p

-tetragonal families.

Family 
 Zone Transformation Scaling relation

���
3
p

H m
n

���
3
p

Z[1 2 0] = F S6 �
2m ÿm 1

0 0 2

0 n 0

0@ 1A m
n

���
3
p

h ÿ!2m 1
2m

���
3
p

h
�4n 2�n 0�� �2 �n n 6m��

�2n �n 2m�� �0 0 4m�� S7 �
3m 0 1

0 0 2

ÿn 2n 0

0@ 1A m
n

���
3
p

h ÿ!2
��
3
p

m 1
2m h

�2n �n 2m�� �2�n n 2m�� S8 �
3m ÿ3m 1

0 0 2

n n 0

0@ 1A m
n

���
3
p

h ÿ!2
��
3
p

m 1
2m h

Z[1 0 0] = G S9 �
m 0 1

2m 0 0

0 n 0

0@ 1A m
n

���
3
p

h ÿ!
��
3
p

m 1
3m

���
3
p

t
�4n 3n 0�� �0 0 6m��

���
3
p

T m
n

���
3
p

Z[1 0 0] S10 �
0 0 1

2m ÿm 0

0 n 0

0@ 1A m
n

���
3
p

t ÿ!2m 1
2m h

�0 2n 0�� �0 �n 3m��

�0 n �m�� �0 0 2m�� S11 �
0 0 1

3m 0 0

ÿn 2n 0

0@ 1A m
n

���
3
p

t ÿ!2
��
3
p

m 1
6m

���
3
p

h

Z[3m 0 n] S12 �
0 ÿm 3m

2m 0 0

0 n n

0@ 1A m
n

���
3
p

t ÿ!2m ���
3
p

t
�0 2n 0�� � �n 0 3m��



��a� ÿ!R ��s� � ��Sa� � S��a�;
g�a� ÿ!R g�s� � g�Sa� � ~Sg�a�S;

K�a� ÿ!R K�Sa� � SK�a�Sÿ1; S 2 GL�3;R�: �37�

An integral transformation S 2 GL�3;Z� leaves the lattice

invariant, whereas metric tensor and point group are trans-

formed into arithmetic equivalent ones

��Sa� � ��a�; g�Sa� � ~Sg�a�S �Z g�a�; SK�a�Sÿ1 �Z K�a�
�38�

with S 2 GL�3;Z�. There are 73 arithmetic classes of the

three-dimensional point groups.

The rational transformations S 2 GL�3;Q� lead in a similar

way to geometric equivalence classes:

��a� �Q S��a�; g�Sa� � ~Sg�a�S �Q g�a�;
SK�a�Sÿ1 �Q K�a�; S 2 GL�3;Q�:

�39�

There are 32 geometric classes of the three-dimensional point

groups, which are called crystal classes. Geometric equivalent

lattices have the property to be in a lattice±sublattice relation,

as considered in the previous sections:

� �Q � $ � � � or � � �: �40�

In crystallography, af®ne equivalence is considered for

isomorphic space groups, for point groups it is replaced by

group isomorphism, whereas all lattices of a given dimension

are af®ne equivalent. As for lattices, the arithmetic equiva-

lence means identity, the arithmetic class of their holohedry is

considered instead, leading to the Bravais classes. The

geometric classes of the holohedries de®ne, in a similar way,

the crystal systems. What have been considered in the previous

sections are in fact the geometric classes of the lattices

themselves, with equivalence indicated by a � symbol. The

rational equivalence of integral lattices is presented ®rst in the

general case and then for two and three dimensions.

8.1. General case

The problem of the classi®cation of integral lattices

according to geometric equivalence classes has been solved by

Minkowski, Hasse and Witt (see ch. 15 in Conway & Sloane,

1988, and references therein). The full theory requires notions

that go beyond the aim of the present work, like p-adic

invariants for integral forms. Here, only three basic and

elementary properties are considered, which help to ®nd the

rational equivalence in most of the relevant crystallographic

cases.

I. An integral symmetric matrix is rational equivalent to a

diagonal matrix:
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Table 4���
2
p

-hexagonal and
���
2
p

-tetragonal families.

Family 
 Zone Transformation Scaling relation

���
2
p

H m
n

���
2
p

Z[4m 0 n] = F S13 �
m ÿm 4m

2m ÿm 0

0 n n

0@ 1A m
n

���
2
p

h ÿ!
��
3
p

m
2
��
3
2

p
h

�0 3n 0�� � �n �n 4m��

�n 4n 4 �m�� �2�n n 8m�� S14 �
2m ÿm 4m

3m 0 0

ÿn 2n n

0@ 1A m
n

���
2
p

h ÿ!3m ���
2
p

h

Z[2m 0 n] S15 �
m m 2m

2m 0 0

0 ÿn n

0@ 1A m
n

���
2
p

h ÿ!
��
3
p

m ���
2
p

t
�0 3n 0�� �2n �n 4 �m��

m
2n

���
2
p

Z[2m 0 n] S16 �
m ÿm 2m

2m ÿm 0

0 2n n

0@ 1A m
2n

���
2
p

h ÿ!
��
3
p

m ��
3
2

p
h

�0 3n 0�� � �n �n 2m��

Z[m 0 n] S17 �
m m m

2m 0 0

0 ÿ2n n

0@ 1A m
2n

���
2
p

h ÿ!
��
3
p

m 1
2

���
2
p

t
�0 3n 0�� �2n �n 2 �m��

���
2
p

T m
n

���
2
p

Z[2m 0 n] S18 �
0 m 2m

2m ÿm 0

0 ÿn n

0@ 1A m
n

���
2
p

t ÿ!2m ��
3
2

p
h

�0 2n 0�� �n �n 2 �m��

� �n �n 2m�� �0 2n 0�� S19 �
ÿm 0 2m

ÿm 2m 0

n 0 n

0@ 1A m
n

���
2
p

t ÿ!2m ��
3
2

p
h

� �n 3n 2m�� �2n 0 4 �m�� S20 �
ÿm 2m 2m

3m 0 0

n ÿ2n n

0@ 1A m
n

���
2
p

t ÿ!2
��
3
p

m 1
2

���
2
p

h

Z[1 1 0] S21 �
m ÿm 1

ÿm m 1

n n 0

0@ 1A m
n

���
2
p

t ÿ!2m 1
2m

���
2
p

t
�n �n 2m�� � �n n 2m��



~Sg0S � diagfa; b; c; . . .g � gfa; b; c; . . .g; S 2 GL�n;Q�:
�41�

Different sequences of the diagonal elements are arithmeti-

cally equivalent. From the crystallographic point of view, (I)

implies that any integral lattice is rational equivalent to an

orthorhombic one and, therefore, for any given integral lattice

there are always super- and sublattices that are orthorhombic.

II. The elements fa; b; c; d; . . .g of the diagonal matrix can

be assumed to be square free integers.

It is suf®cient to consider the ®rst diagonal element

and to suppose a � n2a0 for n integer. Then by

S � diag�1=n; 1; . . . ; 1�, one gets

gfn2a0; b; c; d; . . .g �Q gfa0; b; c; d; . . .g: �42�
III. Witt's cancellation theorem:

If gfa; b; c; d; . . .g �Q gfa; b0; c0; d0; . . .g and a 6� 0;

then gfb; c; d; . . .g �Q gfb0; c0; d0 . . .g: �43�
This means that two rationally equivalent n-dimensional

orthorhombic lattices that share one lattice parameter imply

the equivalence of their �nÿ 1�-dimensional orthorhombic

sublattice having the remaining lattice parameters.

While one can always assume a � 1, by choosing the unit of

length, this cannot be done for the two lattices independently.

This is the reason why the families with members that are

correspondingly related by an integral scaling transformation

(as indicated in Tables 2 to 5) need not be rational equivalent.

Using this theorem, a number of three-dimensional cases

can be reduced to the two-dimensional equivalence problem,

without making explicit use of p-adic invariants.

8.2. Two-dimensional case

In two dimensions, there are four lattice systems: oblique,

rectangular, square and hexagonal. According to the property

(I), all integral ones can be transformed to a rectangular lattice

by S 2 GL�2;Q�. One may suppose g11 � 1, by choosing the

appropriate unit of length:

~S
1 t

t q

� �
S � 1 0

0 qÿ t2

� �
� gr�
�; S � 1 ÿt

0 1

� �
�44�

with 
 � ������������
qÿ t2

p
. Note that one always has t2 < q. For g

integral, t 2 Q, S 2 GL�2;Q�. The axial ratio 
 of the

rectangular lattice ��a� � 
r, generated by the normalized

basis a � �a1; a2�, is given by


 �
������������
qÿ t2

p
� m

n

0 �

m

n

������
m0

n0

r
with m0 and n0 square free. According to property (II),


r ÿ!Q 
0r.

Consider now a rectangular sublattice ��s� of ��a� � 
0r,

with basis vectors s1; s2 and axial ratio 
1 �
������������
m1=n1

p
. Then,

s1 � x1a1 � x2a2; s2 � y1a1 � y2a2; x1; x2; y1; y2 2 Z
s2

1 �
m1

n1

s2
2; s1s2 � 0; S � x1 x2

y1 y2

� �
2 GL�2;Q�: �45�

Solving the equations leads to the relations

y1 � ÿ�m0=n0��x2=x1�y2 and x1 �
����������������������
m0n1=n0m1

p
y2, i.e. to the

condition


1 �
m

n

0;

m

n
2 Q: �46�

The solution is then given by

x1 �
m

n
y2; y1 � ÿ

m0

n0

n

m
x1: �47�

Therefore, in two dimensions the geometric class of an integral

lattice is ®xed by the rectangular axial ratio 
0.

8.3. Three-dimensional case

Let us ®rst consider the rational diagonalization of integral

metric tensors of the three-dimensional crystal systems. This

yields an orthorhombic integral lattice with metric

gor�pqr� �
p 0 0

0 q 0

0 0 r

0@ 1A; p; q; r 2 Z: �48�

Triclinic:

gtr�a� �
p t u

t q v

u v r

0@ 1A � gtr�pqr; tuv�:
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Table 5
1-hexagonal family (isometric).

Family 
 Zone Transformation Scaling relation

1 H m
n Z[1 0 0] = F S22 �

0 m 1

0 2m 0

2n ÿn 0

0@ 1A m
n h ÿ!2m 1

2m h
�0 0 4m�� �0 3n 2 �m��

�0 �n 2m�� �0 2n 0�� S23 �
ÿm 2m 1

ÿ2m 4m 0

3n 0 0

0@ 1A m
n h ÿ!2

��
3
p

m 1
6m

���
3
p

h

Z[2 1 0] = G S24 �
0 0 2

m 0 1

0 n 0

0@ 1A m
n h ÿ!m 1

m

���
3
p

t
� �n 2n 0�� �0 0 2m��



By

S1 �
q 0 0

ÿt 1 0

0 0 1

0@ 1A;
one gets ~S1gtr�pqr; tuv�S1 � gtr�p0q0r0; 0u0v0�.

By

S2 �
v qu qu

ÿu pv pv

0 0 1

0@ 1A;
one gets ~S2gtr�pqr; 0uv�S2 � gtr�p0q0r0; 00v0�.

By

S3 �
0 0 1

r 0 0

ÿv 1 0

0@ 1A;
one gets ~S3gtr�pqr; 00v�S3 � gtr�p0q0r0; 000�.

A combination of these transformations allows one to

diagonalize triclinic and monoclinic metric tensors.

Monoclinic:

gm�pqr; v� � gtr�pqr; 00v�:
Tetragonal:

gt�pr� � gor�ppr� � gtr�ppr; 000�:
Hexagonal:

gh�pr� � gor�p3pr� � gtr�p3pr; 000�:

After these preliminary results, let us look at the rational

equivalence of the hexagonal families
��
3
2

p
H,

���
3
p

H,
���
2
p

H, 1H

and of the tetragonal ones
���
2
p

T,
���
3
p

T, considered in the

previous sections. For all these families, one can choose a

normalized metric tensor so that they all share the lattice

parameter a � 1. In the above parametrization, p � a2 is also

1. One can, therefore, apply Witt's cancellation theorem (III)

and reduce the problem to the two-dimensional rectangular

case. The two-dimensional axial ratio is not the same as the

three-dimensional one. So, for example for
��
3
2

p
H with a � 1

and c � ��
3
2

p
:

gh�13
2� �

Q
gor�133

2� ÿ! gr�33
2� ÿ! 
 � 1��

2
p � 
0 �

���
2
p
;

yielding ��
3
2

p
Hÿ!

���
2
p

r: �49�
In a similar way, one ®nds the correspondences���

2
p

Hÿ! ��
3
2

p
r;

���
3
p

Hÿ! 1r; 1Hÿ!
���
3
p

r;���
2
p

Tÿ!
���
2
p

r;
���
3
p

Tÿ!
���
3
p

r: �50�
Accordingly, one ®nds

1H �Q
���
3
p

T;
��
3
2

p
H �Q

���
2
p

T: �51�
All the other families, indicated above, are rationally

inequivalent.

This result is consistent with the integral scaling relations

reported in Tables 2 to 5. So, for example, the integral scaling

relation between
��
3
2

p
H and

���
2
p

H implied by the transforma-

tion S2 of Table 2 does not imply rational equivalence because

the scaling factor � � 3
���
3
p

m is not rational.

9. Extended rational equivalence

The equivalence relation to be adopted for classifying lattices

depends on the properties considered. Geometric equivalence

is applicable for lattice±sublattice relations or if one considers

the frequency distribution of crystals as a function of a single

lattice parameter, as done by Constant & Shlichta (2003) for

cubic crystals.

There are other lattice properties that are also invariant

with respect to a scalar multiplication of their metric tensor,

like the point-group symmetry or the axial ratio for hexagonal

and tetragonal integral lattices. In these cases, it is appropriate

to extend the rational equivalence with the additional

equivalence:

IV. Extended rational equivalence:

Two integral metric tensors that differ by a non-zero inte-

gral factor z are equivalent:

g�a� � zg�a� � g� ���
z
p

a�; z 2 Z; z 6� 0: �52�
This equivalence relation can be expressed in a way similar to

the rational equivalence by considering the set of matrices���
z
p

S, with z 2 Z and S 2 GL�n;Q�. These matrices form a

subgroup of GL�n;R�. In particular, � ���
z
p

S�ÿ1 � ���
z
p �zSÿ1�. A

possible notation for this group is
����
Z
p

GL�n;Q�. Actually, as

remarked by Souvignier to the author, by transitivity, this

group also consists of matrices of GL�n;Q� multiplied by the

square root of a non-zero rational number, so that a better

notation is
����
Q
p

GL�n;Q�:����
Q

p
GL�n;Q� �

����
m

n

r
S
���m

n
6� 0;

m

n
2 Q; S 2 GL�n;Q�

� �
:

�53�
One can then reformulate the property (IV).

IV0. Integral lattices � and �0, with metric tensors g and g0,
respectively, such that

g0 � ~SgS; S 2
����
Q

p
GL�n;Q�; �54�

are extended rationally equivalent:

g �
��
z
p
Q

g0; � �
��
z
p
Q

�0; z 2 Z: �55�
This equivalence relation implies rational equivalence and an

extended equivalence class consists of one or more rationally

equivalent classes.

One can now reformulate the property (II).

V. The diagonal elements fa; b; c; d; . . .g of the metric

tensor of an orthorhombic integral lattice can be assumed to

be pair-wise relatively prime.

If a pair has a common factor z, one has

gor�za0; zb0; c; d; . . .� �
��
z
p
Q

gor�a0; b0; zc; zd; . . .�: �56�
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Indeed,

gor�za0; zb0; c; d; . . .�
� zgor�a0; b0;

c
z;

d
z; . . .� �Q z gor�a0; b0; zc; zd; . . .�:

This same equivalence has been considered by Fricke & Klein

(1897) for ternary inde®nite integral quadratic forms.

9.1. Application

It is now possible to discuss this extended equivalence for

the six three-dimensional families
�������
3=2
p

H,
���
3
p

H,
���
2
p

H, 1H,���
2
p

T,
���
3
p

T. The rational equivalences
�������
3=2
p

H � ���
2
p

T and

1H � ���
3
p

T have already been derived. In addition, one now

has ��
3
2

p
H � gor�133

2� � gor�263� � gor�136� � gor�312�;���
2
p

H � gor�132�;
implying ��

3
2

p
H �

��
z
p
Q ���

2
p

H �
��
z
p
Q ���

2
p

T; z 2 Z: �57�
In a similar way, ���

3
p

H � gor�133� � gor�311�;���
3
p

T � gor�113�;
thus ���

3
p

H �
��
z
p
Q

1H �
��
z
p
Q ���

3
p

T; z 2 Z: �58�
Moreover,

���
2
p

T is not equivalent with
���
3
p

T, so that these six

families of axial lattices split into two inequivalent extended

rational classes.

10. Conclusions

There are three empirical roots of the present work.

1. The existence of molecular forms of a number of axial-

symmetric biomacromolecules characterized by integral

lattices, like those explicitly considered here (Janner, 2004).

2. The occurrence of sharp peaks in the distribution of

crystals at integral lattice positions (Constant & Shlichta, 2003;

Janner, 2004).

3. The peculiar symmetry of zones in Frank's cubic hexag-

onal structures, and related ones, with Bragg peaks at points of

a square lattice, and of tetragonal crystals having zones with

hexagonal lattice symmetry (Frank, 1965; Singh et al., 1998;

Ranganathan et al., 2002).

The explanation of all these observations is still missing,

despite partial interpretations. Some of these facts can be

considered to be accidental but not all of them. There is

certainly an interplay between composition and geometry.

One way to attack this dif®cult problem involving a non-

negligible number of crystal structures is to restrict the

consideration to the geometry only and to learn more about

the properties of integral lattices. This is what has been

attempted in this paper, starting from a few concrete cases

towards an appropriate mathematical characterization. The

other way round, from mathematics to crystallography, is

much more dif®cult. One has to be aware that the ®eld

involved, that of integral quadratic forms and quadratic

spaces, has been intensively studied by the greatest mathe-

maticians over more than two centuries. The knowledge

required is beyond the range of crystallography.

The results reached in this note in a fairly elementary way

appear to ®t the general mathematical theory: moreover, the

rational equivalence of integral quadratic forms (describing

the metric of the lattices) is a completely solved problem that

goes beyond the rational equivalence of the point-group

symmetry of the lattices classi®ed accordingly in crystal

systems. Both equivalence relations are based on transfor-

mations by the same geometric linear group GL�n;Q�, which

occurs for properties like zones and lattice±sublattice rela-

tions. One is, however, surprised to ®nd out that for other

properties like axial ratio or point-group symmetry it is

another linear group that is relevant for the appropriate

extended rational equivalence: the group denoted here as����
Q
p

GL�n;Q� of invertible rational matrices multiplied by the

square root of non-zero rationals. The lack in the literature of

a speci®c notation for this group is probably because mathe-

maticians are primarily interested in quadratic forms and less

in the corresponding lattices.

The practical utility of these concepts for the problems

raised by the empirical observations mentioned in the Intro-

duction and in this section seems at ®rst to be very limited and

to suggest only some ways of approach. For example, instead

of considering the frequency distribution of monoclinic crys-

tals as a function of their lattice parameters, it could be more

convenient to convert their lattices to rationally equivalent

orthorhombic ones, which are characterized by fewer lattice

parameters. This appears indeed to be the case (de Gelder &

Janner, 2004b). Also, the hexagonal and tetragonal crystals

could be considered as special cases of the orthorhombic ones,

allowing for a comparison with the non-axial lattices.

In fact, the crystallographic importance of the zones derived

is possibly greater than one would think. Indeed, the property

of a crystal to appear within a given 
 peak of integral lattices

can be accidental or due to structural relations, leading to

additional (hidden) symmetries. It is important to be able to

®nd out to which of these two cases a given crystal belongs.

The geometric properties of an integral lattice are essentially

different from those of a generic lattice case (as usually

considered). The position of the Bragg peaks only depends on

the lattice geometry, quite independently of whether the

metrical relations are accidental or not. This is not the case for

the intensity of the Bragg peaks. If one considers, in particular,

the diffraction pattern of a hexagonal or square zone, it is

unlikely that a symmetric intensity distribution will occur

when the metrical relations observed are purely accidental.

For the integral lattices discussed, the present work can help to

identify the zones one should look at, in order to identify the

crystals deserving to be analyzed further.

Thanks are expressed to B. Souvignier for valuable remarks

and suggestions.
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